2007 DOE HFCIT Kick-off Meeting

Advanced Cathode Catalysts and Supports for PEM Fuel Cells DE-FG36-07GO17007

Mark K. Debe 3M Company Feb. 13, 2007

Overview

Timeline

- Project start 1/1/07
- Project end 12/30/10

Budget

- Total Project funding \$10.43MM
 - \$8.34 MM DOE
 - \$2.09 MM Contractor share
- Received in FY07: \$0 million

Partners

- Dalhousie University (J. Dahn)
- JPL (S. R. Narayanan)
- ANL (N. Markovic)

Barriers

- A. Electrode and MEA Durability
- B. Stack Material & Mfg Cost
- C. Electrode and MEA Performance

DOE Technical Targets

Electrocatalyst (2010, 2015)

- Durability w/cycling: hrs
 - < 80°C (5000, 5000)
 - > 80°C (2000, 5000)
- Cost: \$/kW (5,4)
- Mass activity: A/mg (0.44, 0.44)
- PGM Total, g/ kW rated: (0.3, 0.2)

MEA (2010, 2015)

- Cost: \$/kW (10,5)
- Performance: W/cm² at

Rated Pwr. (1,1); 0.8V (0.25, 0.25)

Overall Contract Objectives

The objectives of this project are development of a durable, low cost [both precious group metal (PGM) content and manufacturability], high performance cathode electrode (catalyst and support), that is fully integrated into a proton exchange membrane electrode assembly characterized by:

- a) total Pt group metal loading per MEA of \leq 0.25 mg/cm²,
- b) short-stack specific power density of < 0.5 g/kW at rated power,
- c) durability sufficient to operate at > 80°C for 2000 hours, ≤ 80°C for 5000 hours, with cycling for transportation applications,
- d) high prospects for 40,000 hours durability under operating conditions or stationary applications, and
- e) high volume manufacturability.

Project Focus and Scope

The focus of this project is:

Development of advanced cathode catalysts and supports based on 3M's <u>nanostructured thin film</u> (NSTF) catalyst technology platform, which has already demonstrated catalyst specific activity and durability significantly higher than conventional carbon supported Pt catalysts.

The scope of work includes:

- a) fundamentals of inherent catalyst activity enhancement (with ANL),
- b) high throughput fabrication and characterization of new multielement Pt alloys (ternaries and quaternaries) to obtain enhanced activity and stability (with Dalhousie University and JPL)
- c) new NSTF catalyst support structures for optimized ECSA
- d) extensive fuel cell performance and durability testing
- e) integrated MEA development using advanced 3M membranes and GDL's specific to the new NSTF catalysts.

Project Approach

Task 1.0 Catalyst Activity and Utilization Improvements

- 1.1 NSTF surface area increase NSTF support optimization
- 1.2 Fundamentals of NSTF catalytic activity
- 1.3 New multi-element catalysts to increase activity

Task 2.0 Catalyst Durability Improvements

- 2.1 NSTF catalyst stabilization against dissolution
- 2.2 NSTF catalyst grain size stabilization

Task 3.0 Full Size (> 250 cm²) Single Cell Performance and Durability Tests

Task 4.0 Durability of Advanced Support Structures

- 4.1 Durability tests of new NSTF supports
- 4.2 Durability tests of new commercial catalyst supports
- 4.3 Development of support degradation model

Task 5.0 Stack Testing and Optimized NSTF MEA Roll-good

- 5.1 NSTF catalyst / low EW membrane interface optimization
- 5.2 Optimized anode and cathode GDL's
- 5.3 Short stack testing (> 10 cells, > 250 cm²)

Organizations Responsible for Work

TASK Organiz.	1.1.1	1.1.2	1.2	1.3	2.1	2.2	3	4.1	4.2	4.3	5
3M	X	X	X	X	X	X	X	X	X	X	X
Dalhousie University (1)		X		X	X	X		X			
JPL (2)				X		X					
ANL (3)			X								

- (1) Prof. J. Dahn
- (2) S. R. Narayanan
- (3) Nenad Markovic

Relevant Prior Work

- 3M/DOE Cooperative Agreement No. DE-FC02-97EE50473
- "High Performance, Low Cost Membrane Electrode Assemblies for PEM Fuel Cells"
- 3M/DOE Cooperative Agreement No. DE-FC02-99EE50582
 "High Performance, Matching PEM Fuel Cell Components and Integrated Pilot Manufacturing Processes"
- 3M/DOE Cooperative Agreement No. DE-FC36-02AL67621 "Advanced MEA's for Enhanced Operating Conditions"

Recent Publications

- Debe, M. K.; Schmoeckel, A.; Hendricks, S.; Vernstrom, G.; Haugen, G.;
 Atanasoski, R., ECS Transactions 1(1), 51 (2006).
- Debe, M. K.; Schmoeckel, A. K.; Vernstrom, G. D.; Atanasoski, R., Journal of Power Sources 161, 1002 (2006).
- Steinbach, A.J.; Noda, K.; Debe, M. K., ECS Transactions 3(1) 835 (2006).
- Bonakdarpour, A.; Lobel, R.; Atanasoski, R. T.; Vernstrom, G. D.; Schmoeckel, A. K.; Debe, M. K.; Dahn, J. R., Journal of The Electrochemical Society 153, A1835 (2006).
- Bonakdarpour, A.; Wenzel, J.; Stevens, D. A.; Sheng, S.; Monchesky, T. L.;
 Lobel, R.; Atanasoski, R. T.; Schmoeckel, A. K.; Vernstrom, G. D.; Debe, M. K.;
 Dahn, J. R., Journal of The Electrochemical Society 152, A61(2005).

Relevant Prior Work

2006 Short Stack Performances with 312 cm², 7 layer NSTFC MEA

- ➤ NSTFC CCM Roll-good: Cathode, anode PtCoMn w/ 0.2 mg/cm²; 3M PEM
- ➤ Same performance achieved in 2kW, 5kW short stacks as in 50cm² single cell.

NSTF Catalyst Characteristics vs DOE Targets

Table 3.4.12. Technical Targets: Electrocatalysts for Transportation Applications

	_		,	
Characteristic	Units	2010/2015	3M 2007 Status	Project
		Stack Targets	(volume mfg'd roll-good)	Goal
PGM Total Content	g/kW rated in stack	0.3 / 0.2	0.47 (in 22 cell stack)	0.25
PGM Total Loading	mg PGM/cm ² electrode area	0.3 / 0.2	0.25 - 0.4	0.25
Durability with cycling		5000 / 5000	> 3500 hrs (single	> 5000
At operating T < 80°C	Hours	2000 / 5000	cell load cycling,	
At operating T > 80°C			80°C)	
Mass Activity (150kPa	A/mg-Pt @	0.44 / 0.44	0.18 - 0.25	> 0.5
H ₂ /O ₂ 80°C. 100% RH)	900 mV		(<u><</u> 0.2 mg/cm ²)	
Specific Activity (150 kPa	μΑ/cm²-Pt	720 / 720	2,930	> 5000
H ₂ /O ₂ at 80°C, 100% RH)	@ 900 mV		(0.2 mg/cm ²)	
ECSA loss by Stop/Start	% ECSA loss	< 40 / 40	< 30	< 10
Electrochemical support	mV after 100	< 30 / 30	< 10	~ 0
loss at high potentials	hrs @ 1.2 V			

Project Time-line

Budget by Fiscal Year

DE-FG36-07GO17007

\$MM	FY07	FY08	FY09	FY10	FY11
Cost Share	0.459	0.639	0.544	0.370	0.074
Funding	1.837	2.556	2.175	1.480	0.295
Total	2.296	3.195	2.719	1.850	0.369
	Ві	udget Peric	Budget Period 2		

